A graph/particle-based method for experiment design in nonlinear systems ⋆
نویسندگان
چکیده
We propose an extended method for experiment design in nonlinear state space models. The proposed input design technique optimizes a scalar cost function of the information matrix, by computing the optimal stationary probability mass function (pmf) from which an input sequence is sampled. The feasible set of the stationary pmf is a polytope, allowing it to be expressed as a convex combination of its extreme points. The extreme points in the feasible set of pmf’s can be computed using graph theory. Therefore, the final information matrix can be approximated as a convex combination of the information matrices associated with each extreme point. For nonlinear systems, the information matrices for each extreme point can be computed by using particle methods. Numerical examples show that the proposed technique can be successfully employed for experiment design in nonlinear systems.
منابع مشابه
A class of multi-agent discrete hybrid non linearizable systems: Optimal controller design based on quasi-Newton algorithm for a class of sign-undefinite hessian cost functions
In the present paper, a class of hybrid, nonlinear and non linearizable dynamic systems is considered. The noted dynamic system is generalized to a multi-agent configuration. The interaction of agents is presented based on graph theory and finally, an interaction tensor defines the multi-agent system in leader-follower consensus in order to design a desirable controller for the noted system. A...
متن کاملOptimum parameters of nonlinear integrator using design of experiments based on Taguchi method
For many physical systems like vehicles, acceleration can be easily measured for the respective states. However, the outputs are usually affected by stochastic noise disturbance. The mentioned systems are often sensitive to noise and structural uncertainties. Furthermore, it is very difficult to estimate the multiple integrals of the signal, acceleration to velocity and velocity to position. In...
متن کاملAdaptive Consensus Control for a Class of Non-affine MIMO Strict-Feedback Multi-Agent Systems with Time Delay
In this paper, the design of a distributed adaptive controller for a class of unknown non-affine MIMO strict-feedback multi agent systems with time delay has been performed under a directed graph. The controller design is based on dynamic surface control method. In the design process, radial basis function neural networks (RBFNNs) were employed to approximate the unknown nonlinear functions. S...
متن کاملHarmonics Estimation in Power Systems using a Fast Hybrid Algorithm
In this paper a novel hybrid algorithm for harmonics estimation in power systems is proposed. The estimation of the harmonic components is a nonlinear problem due to the nonlinearity of phase of sinusoids in distorted waveforms. Most researchers implemented nonlinear methods to extract the harmonic parameters. However, nonlinear methods for amplitude estimation increase time of convergence. Hen...
متن کاملAdaptive Distributed Consensus Control for a Class of Heterogeneous and Uncertain Nonlinear Multi-Agent Systems
This paper has been devoted to the design of a distributed consensus control for a class of uncertain nonlinear multi-agent systems in the strict-feedback form. The communication between the agents has been described by a directed graph. Radial-basis function neural networks have been used for the approximation of the uncertain and heterogeneous dynamics of the followers as well as the effect o...
متن کامل